Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Glob Chang Biol ; 29(24): 7029-7050, 2023 Dec.
Article En | MEDLINE | ID: mdl-37706328

Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia-locations that are burned less frequently or severely than their surroundings-may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-fire tree recruitment. Using biophysical predictors and patterns of burn severity from 1180 recent fire events, we mapped the locations of potential fire refugia across upland conifer forests in the southwestern United States (US) (99,428 km2 of forest area), a region that is highly vulnerable to fire-driven transformation. We found that low pre-fire forest cover, flat slopes or topographic concavities, moderate weather conditions, spring-season burning, and areas affected by low- to moderate-severity fire within the previous 15 years were most commonly associated with refugia. Based on current (i.e., 2021) conditions, we predicted that 67.6% and 18.1% of conifer forests in our study area would contain refugia under moderate and extreme fire weather, respectively. However, potential refugia were 36.4% (moderate weather) and 31.2% (extreme weather) more common across forests that experienced recent fires, supporting the increased use of prescribed and resource objective fires during moderate weather conditions to promote fire-resistant landscapes. When overlaid with models of tree recruitment, 23.2% (moderate weather) and 6.4% (extreme weather) of forests were classified as refugia with a high potential to support post-fire recruitment in the surrounding landscape. These locations may be disproportionately valuable for ecosystem sustainability, providing habitat for fire-sensitive species and maintaining forest persistence in an increasingly fire-prone world.


Fires , Tracheophyta , Ecosystem , Forests , Trees , Weather
2.
Environ Manage ; 40(4): 623-34, 2007 Oct.
Article En | MEDLINE | ID: mdl-17638044

Pine-oak forests are of high ecological importance worldwide, but many are threatened by uncharacteristically severe wildfire. Forest restoration treatments, including the reintroduction of a surface fire regime, are intended to decrease fire hazard and emulate historic ecosystem structure and function. Restoration has recently received much management attention and short-term study, but little is known about longer-term ecosystem responses. We remeasured a replicated experimental restoration site in the southwestern United States 5 years after treatments. Basal area, tree density, and canopy cover decreased in the treated units at a faster rate than in controls. Delayed mortality, not evident right after treatment, decreased density modestly (13% in treated units and 10% in controls) but disproportionately affected large trees ("large" ponderosa pines were those with diameter at breast height [dbh] > or =37.5 cm; other species dbh > or =20 cm). In treated units, 10.9 large trees ha(-1) died, whereas 6.2 trees ha(-1) died in control units. Compared with reference conditions, the experimental blocks remained higher in pine density and, in three of the four blocks, in basal area. Pine trees grew significantly faster in treated units than in controls, enough to reach the reference level of basal area in 6 years. Although mortality of large trees is a concern, the treated units have vigorous growth and low density, indicating that they will be relatively resistant to future drought and fire events. Similar treatments may be beneficial in many areas of the United States and in related pine-oak ecosystems elsewhere.


Conservation of Natural Resources , Forestry/methods , Arizona , Disasters , Pinus ponderosa/growth & development , Quercus/growth & development , Trees
...